## Analysis 2 <br> 5 March 2024

$$
\text { Warm-up: Calculate } \frac{\mathrm{d}}{\mathrm{~d} x}\left[\sin \left(x^{4}+5^{3}\right)+5 x^{2}\right]
$$

## Topics

The first half of year will focus on "multi-variable calculus".

- path integrals
- partial derivatives and directional derivatives
- local extremes of multi-variable functions
- double integrals

The second half of the year will focus on "differential equations".

- vocab for ODEs and IVPs in general
- separable ODEs
- first-order linear ODEs
- higher-order linear ODEs with constant coefficients


## Calculations vs. Ideas

In Analysis 1, I often tried to focus on ideas first.

- For example, I talked about finding min / max using critical points before we learned the Product Rule.

For some topics this year, l'm going to do calculations first.

- We will do calculations like

$$
\frac{\partial}{\partial y}\left[x^{5} y^{9}\right]=9 x^{5} y^{8} \quad \text { and } \quad \int_{0}^{1} \int_{3}^{5} x y \mathrm{~d} x \mathrm{~d} y=4
$$

without worrying-at first-about what they mean or what problems could be solved using those calculations.

- That discussion will come later.


## Grades

Quizzes worth 5 points each

- 6 total. Lowest is dropped.
- There will also be "bonus points" from Portal, but the maximum score for each quiz is still $5 / 5$. (Details on next slide.)

Exams worth 15 points each

- Exam 2 might be last day of class (with second attempt during the University's exam period). Will be decided later.

Participation worth 5 points

## Grades

## Quizzes - details

- There will be in-class quizzes approximately every two weeks. The maximum score on each quiz is 5 points.
- On most weekends, ePortal will have a single "bonus" task.
- If you answer the ePortal task correctly, you earn an extra point on the quiz, so you could make a small mistake in class and still get full credit.
- If you answer the ePortal task incorrectly, you can still get 5 / 5 from the in-class quiz!
Realistically, I know students can cheat on online tasks. If you do, you might earn the 1 point, but you will not understand the material as well, so you will probably not do well on the in-class quiz!


## Grades

There are $6 \times 5+15+15+5=\mathbf{6 0}$ total possible points.

| Points | $[0,30)$ | $[30,36)$ | $[36,42)$ | $[42,48)$ | $[48,54)$ | $[54,60]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade | 2.0 | $3.0^{*}$ | $3.5^{*}$ | 4.0 | 4.5 | 5.0 |

* Passing also requires at least 12 points from each "half" of the course.

You can work together on task lists (which are not graded).
Quizzes and exams should be individual.

- Cheating on in-class quiz $\rightarrow$ quiz grade 0 .
- Cheating on exam $\rightarrow$ course grade 2.0.

More than 5 unexcused absences after this week $\rightarrow$ course grade 2.0.

## Accessibiliky

Department of Accessibility and Support for People with Disabilities (DDO)

- Office: C-13 rooms 109 and 107
- Telephone: 713204320
- Website: https://ddo.pwr.edu.pl/
- Email: pomoc.n@pwr.edu.pl

If you need any kind of accommodation, please write me an email. I am happy to help.

## Scalars and vectors

Of course math has numbers:

- 5
- $\frac{1}{3}$
- $\pi^{2}$
- $\ln (3)$

These are also called scalars sometimes.

You have hopefully also seen vectors
$[5,0,2]$
and matrices
$\bullet\left[\begin{array}{cc}2 & 0 \\ -1 & 9\end{array}\right] \quad \bullet\left(\begin{array}{cc}2 & 0 \\ -1 & 9\end{array}\right)$
in other classes.

## Scalars and vectors

We will only use two important vector ideas/calculations in this class:

1) The length or magnitude of the vector $\vec{v}=[a, b, c]$ is written as $|\vec{v}|$ and is calculated as

$$
|\vec{v}|=\sqrt{a^{2}+b^{2}+c^{2}} .
$$

- A unit vector has length 1.
- If $s>0$ is a scalar, then $|s \vec{v}|=s|\vec{v}|$.

2) The dot product or scalar product of two vectors $\vec{a}=\left[a_{1}, a_{2}, a_{3}\right]$ and $\vec{b}=\left[b_{1}, b_{2}, b_{3}\right]$ is written as $\vec{a} \cdot \vec{b}$ and has two formulas:

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}, \quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos (\theta)
$$

where $\theta$ is the angle between the two vectors.

Task 1: If $\vec{w}=-5 \hat{\imath}+2 \hat{\jmath}$, what is $|\vec{w}|$ ?

## Answer: $\sqrt{29}$

Task 2: If $\vec{v}=a \hat{\imath}+b \hat{\jmath}$, what is $|\vec{v}|$ ?
Answer: $\sqrt{a^{2}+b^{2}}$
Task 3: If $\vec{q}=4 n \hat{\imath}+p^{3} \hat{\jmath}$, what is $|\vec{q}|$ ?

$$
\text { Answer: } \sqrt{16 n^{2}+p^{6}}
$$

The last task might look strange because has several variables, but it's really exactly the same formula (the Pythagorean formula) you would use to find the longest side of a right triangle!

## Functions

The functions

- $f(x)=x^{3}$
- $g(x)=2 e^{9 x}$
- $f(x)=\sin (x)$
- $h(t)=t^{8}+\ln (1+\cos (1 / t))$
all have one input and one output. (We can write $f: \mathbb{R} \rightarrow \mathbb{R}$ for this.)

We can graph these kinds of functions on a 2D drawing, and we can find the derivative, the tangent line at a point, the indefinite or definite integral, etc.

Now we will start looking at functions with multiple inputs, so $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.


|  | a scalar (number) <br> as output | a vector (or multiple <br> numbers) as output |
| :---: | :---: | :---: |
| a scalar (number) <br> as input |  | "vector function" (also <br> used for parametric <br> curves) |
| a vector (or multiple <br> numbers) as input | "scalar function" <br> or "scalar field" | "vector field" |

A function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a scalar function. For functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ we often write

$$
f(x, y)
$$

although the letters do not have to be " $f$ " and " $x$ " and " $y$ ".
These often come from physical descriptions:

- $r(x, y)=\sqrt{x^{2}+y^{2}}$ distance from $(x, y)$ to the origin
- $P(\ell, w)=2 \ell+2 w$ perimeter of length $L$, width $w$ rectangle
- $K(m, v)=\frac{1}{2} m v^{2} \quad$ Kinetic energy for mass $m$ and speed $v$

We can have even more inputs, such as

- $T(x, y, z, t)$
temperature at different places and times


## Graphs of functions

The graph of a function $f(x)$ is the set of all points $(x, y)$ in 2D for which

$$
y=f(x) .
$$

We draw this on a plot with the input on the horizontal axis and the output on the vertical axis.

$$
f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x-\frac{2}{3}
$$




## Graphs of functions

The $x$-axis has all points with $y=0$.

The $y$-axis has all points with $x=0$.



For a function with two inputs, we need a 3D picture for the graph. The graph of $f(x, y)$ is the set of points $(x, y, z)$ in 3D for which

$$
z=f(x, y)
$$

Example: The graph of $f(x, y)=4 x^{2}+y^{2}$, drawn from two perspectives:


The "coordinate axes" and the "coordinate planes" in 3D are these:

the $x$-axis


the $y$-axis


the $z$-axis

the $x y$-plane

In general, equations of planes can look like $A x+B y+C z=D$ (you might have seen this in your Linear Algebra class). A plane that is parallel to a coordinate plane has a much more simple formula. Examples:

- The plane $x=-2$ is parallel to the $y z$-plane (which is $x=0$ ).
- The plane $z=1$ is parallel to the $x y$-plane (which is $z=0$ ).



## Curves

A curve in 2D space might be described as a graph, like $y=x^{3}-x$, but some curves are easier to describe with "parametric equations". For example, the parametric equations

- $x(t)=\cos t, \quad y(t)=\sin t$
with $-\frac{3 \pi}{4} \leq t \leq \frac{\pi}{4}$ draw part of the circle $x^{2}+y^{2}=1$.

In 3D, curves are almost always described by parametric equations. Example:

- $x(t)=8 \cos t, \quad y(t)=3, \quad z(t)=8 \sin t$
describes a circle that is in a vertical plane (the plane $y=3$ ).

Instead of listing separate equations for $x$ and $y$, we can also write a set of parametric equations as a single vector equation. For example,

- $x(t)=\cos t, \quad y(t)=e^{10 t}$
is the same as
- $\vec{r}(t)=(\cos t) \hat{\imath}+e^{10 t} \hat{\jmath}$.

NOTE: We use $\vec{r}$ to mean either $[x, y]$ or $[x, y, z]$ depending on context.

We can do algebra with this function. For example,

- $|\vec{r}(t)|=\sqrt{(\cos t)^{2}+e^{20 t}}$.

We can also do analysis with this function! For example,

- $\vec{r}^{\prime}(t)=(-\sin t) \hat{\imath}+10 e^{10 t} \hat{\jmath}$.


## Analysis 1 integrals

For $f(x)$, we had indefinite integrals, like $\int x \mathrm{~d} x=\frac{1}{2} x^{2}+C$, and we had definite integrals, like $\int_{0}^{6} x \mathrm{~d} x=18$

Although we never did this, it's also possible to write

$$
\int_{I} x \mathrm{~d} x=18, \quad \text { where } I=[0,6] \text { or } I=\{x: 0 \leq x \leq 6\}
$$

using a single letter for an interval. This is "the integral of $x$ 'over' the interval $I$ ".

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we will only have definite integrals.

## Path integrals

If the letter $C$ is used for a curve, then the path integral of the function $f(x, y)$ over the curve $C$ is written as

$$
\int_{C} f(x, y) \mathrm{d} s .
$$

This can also be called "line integral" or "curve integral" or "curvilinear integral". Questions:

- What does this physically mean? $\rightarrow$ Next week
- How do we calculate this? $\rightarrow$ Today

Answer: $\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t$ if the curve $C$ is described by $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}$.

## Example 1: Calculate

$$
\int_{C} x e^{2 y} \mathrm{~d} s
$$

where $C$ is the curve with parametric equations $x(t)=3 \cos t, y(t)=3 \sin t$ for $0 \leq t \leq \frac{\pi}{2}$.
$\vec{r}=[3 \cos t, 3 \sin t]$, so $\vec{r}^{\prime}=[-3 \sin t, 3 \cos t]$ and $\left|\vec{r}^{\prime}\right|$ simplifies to 3 .
The integral is $\int_{0}^{\pi / 2}(3 \cos t) e^{2(3 \sin t)} 3 d t=\left.\frac{3}{2} e^{6 \sin t}\right|_{t=0} ^{t=\pi / 2}=\frac{3}{2}\left(e^{6}-1\right)$.

$$
\text { Path integral calculation: } \int_{C} f \mathrm{~d} s=\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t
$$

Example 2: Calculate the path integral of

$$
f(x, y)=\sqrt{1+4 x^{2}}
$$

over the curve given by

$$
x=t, \quad y=t^{2}, \quad 0 \leq t \leq 1 .
$$

Answer: $\frac{7}{3}$

Path integral calculation: $\int_{C} f \mathrm{~d} s=\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t$

## DERIVATIVES

For a function of one variable, the derivative of $f(x)$ can be written as any of

$$
f^{\prime}(x) \quad f^{\prime} \quad \frac{\mathrm{d}}{\mathrm{~d} x}[f] \quad \frac{\mathrm{d} f}{\mathrm{~d} x}
$$

and is a new function. There is also the derivative at a point, which is just a number (the slope of the tangent line to $y=f(x)$ at the $x$-value).

The derivative is originally defined as a limit, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, but we
don't use that formula once we learn rules like

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{p}\right]=p x^{p-1}, \quad \frac{\mathrm{~d}}{\mathrm{~d} x}[\sin (x)]=\cos (x), \quad \frac{\mathrm{d}}{\mathrm{~d} x}[\ln (x)]=\frac{1}{x} .
$$

if $p$ is constant

## DERIVATIVES

For a function $f(x, y)$ we can change $x$ or change $y$ (or both at once-more on that later), so we have multiple ways to take derivatives.

The partial derivative of $f(x, y)$ with respect to $x$ can be written as any of

$$
f_{x}^{\prime}(x, y) \quad f_{x}^{\prime} \quad D_{x} f \quad \partial_{x} f \quad \frac{\partial f}{\partial x}
$$

and is what you get if you think of every letter other than $x$ as a constant.

Like with $f^{\prime}(x)$ and $f^{\prime}(a)$, we also have the partial derivative of $f$ with respect to $x$ at the point $(a, b)$, which is a single number; we write this as $f_{x}^{\prime}(a, b)$.

To calculate the partial derivative (function) of $f(x, y)$ with respect to $x$, we just pretend that any variable other than $x$ is a constant.

$$
\frac{\partial}{\partial x}\left[\sin \left(x^{4}+y^{3}\right)+x^{2} y\right]=?
$$

It might help to think of functions with one variable and a similar format....

To calculate the partial derivative (function) of $f(x, y)$ with respect to $x$, we just pretend that any variable other than $x$ is a constant.

$$
\begin{aligned}
& \frac{d}{d x}\left[\sin \left(x^{4}+5^{3}\right)+5 x^{2}\right]=\cos \left(x^{4}+5^{3}\right) \cdot 4 x^{3}+10 x \\
& \frac{\partial}{\partial x}\left[\sin \left(x^{4}+k^{3}\right)+k x^{2}\right]=\cos \left(x^{4}+k^{3}\right) \cdot 4 x^{3}+2 k x \\
& \frac{\partial}{\partial x}\left[\sin \left(x^{4}+y^{3}\right)+x^{2} y\right]=\cos \left(x^{4}+y^{3}\right) \cdot 4 x^{3}+2 x y
\end{aligned}
$$

To calculate the partial derivative (function) of $f(x, y)$ with respect to $x$, we just pretend that any variable other than $x$ is a constant.

$$
\left(\sin \left(x^{4}+5^{3}\right)+5 x^{2}\right)^{\prime}=\cos \left(x^{4}+5^{3}\right) \cdot 4 x^{3}+10 x
$$

$$
\left(\sin \left(x^{4}+k^{3}\right)+k x^{2}\right)_{x}^{\prime}=\cos \left(x^{4}+k^{3}\right) \cdot 4 x^{3}+2 k x
$$

$$
\left(\sin \left(x^{4}+y^{3}\right)+x^{2} y\right)_{x}^{\prime}=\cos \left(x^{4}+y^{3}\right) \cdot 4 x^{3}+2 x y
$$

There is also the partial derivative of $f(x, y)$ with respect to $y$, in which we think of every letter other than $y$ as a constant (that includes $x$ !).

$$
\begin{aligned}
& \left(\sin \left(8^{4}+t^{3}\right)+8^{2} t\right)^{\prime}=\cos \left(8^{4}+t^{3}\right) \cdot 3 t^{2}+8^{2} \\
& \left(\sin \left(8^{4}+y^{3}\right)+8^{2} y\right)_{y}^{\prime}=\cos \left(8^{4}+y^{3}\right) \cdot 3 y^{2}+8^{2}
\end{aligned}
$$

$$
\left(\sin \left(x^{4}+y^{3}\right)+x^{2} y\right)_{y}^{\prime}=\cos \left(x^{4}+y^{3}\right) \cdot 3 y^{2}+x^{2}
$$

There is also the partial derivative of $f(x, y)$ with respect to $y$, in which we think of every letter other than $y$ as a constant (that includes $x$ !).

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\sin \left(8^{4}+t^{3}\right)+8^{2} t\right]=\cos \left(8^{4}+t^{3}\right) \cdot 3 t^{2}+8^{2} \\
\frac{\mathrm{~d}}{\mathrm{~d} y}\left[\sin \left(8^{4}+y^{3}\right)+8^{2} y\right]=\cos \left(8^{4}+y^{3}\right) \cdot 3 y^{2}+8^{2} \\
\frac{\partial}{\partial y}\left[\sin \left(x^{4}+y^{3}\right)+x^{2} y\right]=\cos \left(x^{4}+y^{3}\right) \cdot 3 y^{2}+x^{2}
\end{gathered}
$$

Task 1: Calculate $\frac{\partial}{\partial x}\left[y^{2} \sin (x)\right]$. This is $f_{x}^{\prime}$ for the function $f(x, y)=y^{2} \sin (x)$.
You can think about $\frac{d}{d x}\left(k^{2} \sin x\right)$ if it helps.
Answer: $y^{2} \cos (x)$.
Task 2: Calculate $\frac{\partial}{\partial y}\left[y^{2} \sin (x)\right]$. This is $f_{y}^{\prime}$ for the function $f(x, y)=y^{2} \sin (x)$.
You can think about $\frac{d}{d t}\left(k^{2} \sin 1\right)$ if it helps.
Answer: $2 y \sin (x)$.

